
Electrical Engineering 229A Lecture 9 Notes

Daniel Raban

September 23, 2021

1 Uniquely Decodable Codes

1.1 Uniquely decodable and prefix-free codes

Last time, we talked about lossless data compression.

Definition 1.1. A lossless data compression scheme is a sequence ((en, dn), n ≥ 1)
of maps en : X n → {0, 1}∗ \ {∅} and dn : {0, 1}∗ \ {∅} → X n such that dn ◦ en is the
identity for each n.

Equivalently, we could specify (en, n ≥ 1) and insist that each en is one to one. Equiv-
alently, we could specify e∗ : X ∗ \ {∅} → {0, 1}∗ \∅ which is one to one on each X n.

One practical way to create encoding maps is to specify e : X → {0, 1}∗ \ {∅} and
define en(xn1) = e(x1)e(x2) · · · e(xn).

Example 1.1. If X = {1, 2, 3} with

e(1) = 0, e(2) = 11, e(3) = 0110,

then we can encode larger words like

e(12) = 011.

We could also do this by specifying e on blocks of length r for some r ≥ 1.

Definition 1.2. We’ll say e is uniquely decodable if each en is one to one.

This is equivalent to requiring that e∗ is one to one. One way to get unique decodability
is if e is instantaneous or prefix-free.

Definition 1.3. The encoding map e is instantaneous or prefix-free1 if for all x 6= y ∈
X , e(x) is not a prefix of e(y).

1Cover and Thomas call this a “prefix code,” which is super confusing.

1

It’s easiest to think about this in terms of a binary tree. Prefix-free is equivalent to
the requirement that no node e(x) in the coding can lie on the path between the root and
another node e(y).

Example 1.2. The previous example is not prefix-free.

Example 1.3. The following example is uniquely decodable but not prefix-free:

e(1) = 0, e(2) = 01, e(3) = 11.

If the first received bit is 1 and the next bit is 1, we can parse 11 from the received sequence.
If the first received bit is 0, then if the next bit is 0, we can parse off the first 0; if the next
bit is 1, we need to wait to figure out the parity of the run of 1s.

1.2 Kraft’s inequality

Theorem 1.1 (Kraft’s inequality). For any prefix-free binary code e,∑
x∈X

2−`(e(x)) ≤ 1.

Proof. A formal proof is in Cover and Thomas. The idea is to add the weights of the e(x),
where a node at depth d gets weight 2−d.

2

Remark 1.1. There is a version of this for prefix-free D-ary codes e : X → {0, . . . , D−1}.
In this case, Kraft’s inequality says ∑

x∈X

D−`(e(x)) ≤ 1.

Here is a generalization by McMillan.

Theorem 1.2. For every uniquely decodable code e : X → {0, 1}∗ \ {∅},∑
x∈X

2−`(e(x)) ≤ 1.

Remark 1.2. There is also a version of this for uniquely decodable D-ary codes e : X →
{0, . . . , D − 1}. In this case, Kraft’s inequality says∑

x∈X

D−`(e(x)) ≤ 1.

Let’s prove the D-ary version:

Proof. We use a generating function technique. Consider the expression∑
xk∈X

D−`(e(xk))

at time k. Then∑
xn
1∈X n

D−`(en(x
n
1)) =

∑
xn
1∈X n

n∏
k=1

D−`(e(xk)) =
n∏

k=1

∑
xk∈X

D−`(e(xk)).

Take n-th roots on both sides. The key observations are that on the left hand side,

1. The total number of terms that provide D−m for any m ≥ 1 is at most Dm (by
unique decodability).

2. The largest m for which D−m shows up in the left hand side is n`max, where `max =
maxx `(e(x)).

So this tells us that the left hand side is ≤ n`max. Now observe that

(n`max)1/n = e
1
n
(logn+log `max) n→∞−−−→ 1.

3

1.3 Optimal compression as a linear programming problem

To optimize compression (in bits/symbol) for an iid source (X -valued, marginal distribu-
tion (p(x), x ∈X)), we want to solve

minimize:
∑
x∈X

p(x)`(e(x))

subject to: e is prefix-free.

This suggests studying the problem

minimize:
∑
x∈X

p(x)`(e(x))

subject to:
∑
x∈X

2−`(e(x)) ≤ 1, `(e(x)) ≥ 1.

This, although looking like a weakening of the constraint, actually is equivalent because
for every collection of lengths satisfying Kraft’s inequality, there is a prefix-free code with
those lengths.

Proposition 1.1. Given any (`(x), x ∈ X) with `(x) ≥ 1 and
∑

x∈X 2−`(x) = 1, there
exists a prefix-free e : X → {0, 1}∗ \ {∅} such that for all x, `(e(x)) = `(x).

Proof. Proceed by induction on |X |. Merge the two smallest values 2−`(x) to reduce the
size of the alphabet by 1.

This new linear program is an integer programming problem because the variables `(x)
are required. This is computationally difficult. We can relax this to get a tractable problem

minimize:
∑
x∈X

p(x)`(e(x))

subject to:
∑
x∈X

2−`(e(x)) ≤ 1,

where the `(x) can be real-valued. The second condition implies `(x) ≥ 0. We can also
replace the inequality by an equality because this only improves the objective.

We can solve this using Lagrange multipliers. Consider the Lagrangian

∑
x

p(x)`(x) + λ

(∑
x

2−`(x) − 1

)
.

Differentiate in each `(x), and set the derivative equal to 0 to get

p(x)− λ loge 2 · 2−`(x) = 0 ∀x ∈X .

4

This requires
`(x) = − log p(x) + k

for all x ∈ X . The condition
∑

x 2−`(x) = 1 gives us k = 0. So the optimal value of the
objective is

−
∑
x∈X

p(x) log p(x) = H(p).

We have just proven the following:

Theorem 1.3. The expected length of a uniquely decodable binary code is ≥ H(p).

Remark 1.3. Taking `(x) = dlog 1
p(x)e for x ∈X , we have∑

x∈X

2−`(x) ≤ 1.

Hence, there is a prefix code with these lengths. Such a code is called a Shannon code.
Its expected length is ∑

x

p(x)
⌈

log
1

p(x)

⌉
≤ H(p) + 1.

For a stationary process working at block length n, we can get lossless compression
with bits/symbol at most

1

n
H(X1, . . . , Xn) +

1

n
.

We will discuss this next time.

5

	Uniquely Decodable Codes
	Uniquely decodable and prefix-free codes
	Kraft's inequality
	Optimal compression as a linear programming problem

